3-1 Bias-Variance Analysis

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

1. Hyperparameters

2. Analysis

Review

- 1. We have learnt FNNs, and there are two types of parameters:
 - Model parameters: $\{(\boldsymbol{b}^{[l]}, \boldsymbol{W}^{[l]}) : l = 1, \dots, L\}$
 - ▶ They can be estimated by gradient descent algorithms
 - Hyperparameters, which cannot be estimated using training data

Hyperparameters

- 1. α : Learning rate
- 2. L: Number of layers
- $3 \cdot \{d^{[l]}: l=1,\ldots,L-1\}$: Number of neurons per each hidden layer
- 4. m: Mini-batch size
- 5. Gradient descent algorithm
- 6. Number of iterations for the chosen gradient descent algorithm
- 7**.** ...

Notations

- 1. x: General notation for a feature vector
- 2. y: General notation for the observed label
- 3. $S = \{(x_i, y_i) : i = 1, ..., n\}$: training examples
- 4. y_t : general notation for the true target given $\mathbf{x}(y_t = E(y \mid \mathbf{x}))$
- 5. \hat{y} : estimation of the true label y_t based on S using a certain model

Bias and variance

1. Bias

$$Bias(\hat{y}) = E_S(\hat{y}) - y_t$$

- $E_S(\cdot)$: expectation with respect to the randomness existed in generating S
- \bullet Bias and variance are defined for a GIVEN feature \boldsymbol{x}

2. Variance

Variance(
$$\hat{y}$$
) = $E_S{\{\hat{y} - E_S(\hat{y})\}^2}$

Examples -- mean estimation

1. Consider the following setup

$$y \mid \boldsymbol{x} = \mu + \epsilon$$

- $E(\epsilon \mid \boldsymbol{x}) = 0$, $Variance(\epsilon \mid \boldsymbol{x}) = \sigma^2$
- The true regression is a constant function with respect to the feature \boldsymbol{x}
- The true label $y_t = E(y \mid \boldsymbol{x}) = \mu$
- 2. For a new feature \boldsymbol{x} , the label is estimated

$$\hat{y} = \hat{\mu}$$

- $\hat{\mu} = n^{-1} \sum_{i=1}^{n} y_i$
- The (working) model is $f(\mathbf{x}) = c$ for all \mathbf{x} , where c is the model parameter (constant)

Examples -- mean estimation

1. Bias

$$Bias(\hat{y}) = E_S(\hat{y}) - y_t$$
$$= E_S(\hat{\mu}) - \mu = 0$$

2. Variance

Variance(
$$\hat{y}$$
) = $E_S\{\hat{y} - E_S(\hat{y})\}^2$
= Variance($\hat{\mu}$) = $n^{-1}\sigma^2$

3. Those properties are what we have learnt for the mean estimator

Examples -- linear regression

1. Consider the following setup

$$y \mid \boldsymbol{x} = b_0 + \boldsymbol{x}^{\mathrm{T}} \boldsymbol{w}_0 + \epsilon$$

- $E(\epsilon \mid \boldsymbol{x}) = 0$, $Variance(\epsilon \mid \boldsymbol{x}) = \sigma^2$
- The true regression is a linear function of the feature \boldsymbol{x} with parameters b_0, \boldsymbol{w}_0
- The true label $y_t = E(y \mid \boldsymbol{x}) = b_0 + \boldsymbol{x}^{\mathrm{T}} \boldsymbol{w}_0$

Examples -- linear regression

1. For a new feature \boldsymbol{x} , the label is estimated

$$\hat{y} = \hat{b} + \boldsymbol{x}^{\mathrm{T}} \hat{\boldsymbol{w}}$$

- The (working) model is $f(\boldsymbol{x};\boldsymbol{\theta}) = b + \boldsymbol{x}^{\mathrm{T}}\boldsymbol{w}$, with model parameter $\boldsymbol{\theta} = (b, \boldsymbol{w}^{\mathrm{T}})^{\mathrm{T}}$
- \hat{b}, \hat{w} : are estimated by minimizing

$$n^{-1} \sum_{i=1}^{n} (y_i - b - \boldsymbol{x}^{\mathrm{T}} \boldsymbol{w})^2$$

• Check Chapter 1 for the solution

Examples -- linear regression

1. We can show

$$E_S(\hat{b}) = b_0 \quad E_S(\hat{\boldsymbol{w}}) = \boldsymbol{w}_0$$

- That is, the estimated model parameters are unbiased.
- 2. Bias

$$Bias(\hat{y}) = E_S(\hat{y}) - y_t$$
$$= E_S(\hat{b} + \boldsymbol{x}^T \hat{\boldsymbol{w}}) - b_0 \boldsymbol{x}^T \boldsymbol{w}_0 = 0$$

3. Variance

Variance
$$(\hat{y}) = E_S\{\hat{y} - E_S(\hat{y})\}^2$$

= Variance $(\hat{b} + \boldsymbol{x}^T \hat{\boldsymbol{w}})$ = Check your textbook

10

Examples -- ridge regression

- 1. We still consider the setup for linear regression
- 2. Model parameters are estimated by minimizing

$$\sum_{i=1}^{n} (y_i - b - \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w})^2 + \frac{\lambda}{\lambda} \sum_{j=1}^{d} w_j^2$$

- $\boldsymbol{w} = (w_1, \dots, w_d)^{\mathrm{T}}$
- hyperparameter λ to control the complexity of the model
- The resulting estimated label is no longer unbiased, and check textbook for more discussion

- 1. Traditionally,
 - Simpler models corresponds to large bias and small variance
 - More sophisticated models corresponds to small bias and large variance
- 2. Usually, as model complexity increases,
 - Bias decreases
 - Variance increases
 - Thus, "larger models are worse!"

- 1. Surprisingly, for deep learning models, we have the amazing double descent phenomene
 - "as we increase model size, performance first gets worse and then gets better"
 - we show that double descent occurs not just as a function of model size, but also as a function of the number of training epochs
 - Check the paper by Nakkiran et al. (2019) for details

1. The following image is Figure 1 of Nakkiran et al. (2019)

Figure 1: **Left:** Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise. **Right:** Test error, shown for varying train epochs. All models trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

1. The following image is Figure 2 of Nakkiran et al. (2019)

Figure 2: **Left:** Test error as a function of model size and train epochs. The horizontal line corresponds to model-wise double descent-varying model size while training for as long as possible. The vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent as train time increases. **Right** Train error of the corresponding models. All models are Resnet18s trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

Wang, Z. (WIS

Tune the hyperparameters

- 1. Cross validation is used for tradition statistical models
- 2. It is not feasible for deep learning models
- 3. For deep learning models, we use a validation set to tune hyperparameters
 - Training dataset: to train a deep learning model
 - Validation dataset: evaluate the performance of models with different hyperparameters
 - Different sets of hyperparameters correspond to different models
 - Choosing a good set of hyperparameters is equivalent to finding a good model
 - Test dataset (optional): test the performance of the CHOSEN model in real application

Tune hyperparameters

1. Criterion:

- Reduce bias first
 - ▷ Increase training dataset (expensive)
 - Consider more complex models
- If the bias is controlled, reduce the variance
 - ▶ Increase training dataset (expensive)
 - Regularization